Monitoring Part 1: CEMS & Excepted Monitoring Options

Louisville, KY July 25, 2001 Matthew Boze

Part 1 Overview

- CEMS
 - System Types
 - Performance Specifications
- ◆ Excepted Options
 - Appendix D Heat Input Rate from Fuel Flow Meters
 - Appendix E NO_x Emission Rate Estimation Procedures
 - LME Default NO_x Rate for Low Mass Emission Units

Monitoring Requirements - Subpart H Monitoring

- ♦ NO_x Mass Emissions (lb/hr)
- ◆ NO_x Emission Rate (lb/mmBtu)
 - Required only if unit monitors NO_x Emission Rate and Heat Input Rate to determine the NO_x Mass Emissions
- Heat Input (mmBtu/hr)
 - Required only if unit monitors NO_x Emission Rate and Heat Input Rate to determine NO_x Mass Emissions, or
 - If required by State Rule, or
 - If the unit is subject to the requirements of 40 CFR 97 (§126 units)

Monitoring Options for Determining NO_x Mass Emissions (Tons NO_x)

- ◆ NO_x Concentration (ppm) & Stack Flow Rate (scfh)
- NO_x Emission Rate (lb/mmBtu) & Heat Input Rate (mmBtu/hr)
 - NO_x Emission Rate
 - » NO_x Concentration & Diluent (%CO2 or O2), or
 - » Part 75, Appendix E (for gas or oil fired peaking units)
 - Heat Input Rate
 - » Stack Flow & Diluent (%CO2 or O2), or
 - » Fuel flow monitoring via Part 75, Appendix D

Monitoring Options for Determining NO_x Mass Emissions (Tons NO_x)

- Low Mass Emissions Excepted Methodology
 - Default NO_x Emission Rate or Fuel-and-unit specific NO_x Emission Rate
 - Default Heat Input Rate or Long Term Fuel Flow

CEMS and Excepted Monitoring Systems

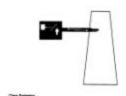
CEMS	Excepted CMS	
 NO_x-Diluent CEMS (NO_x monitor & CO₂ or O2 monitor, for NO_x emission rate) NO_x concentration system Stack volumetric flow monitoring systems 	➤ Part 75, Appendix D fuel flow monitoring (Gas & Oil units only) ➤ Part 75, Appendix E NO _x Emissions Estimation (Gas & Oil Peaking units only)	Data Acquisition and Handling System (DAHS) Required
	➤ Low Mass Emissions Unit Methodology (Gas & Oil units only)	No DAHS Required

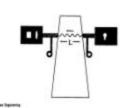
Data Reduction for CEMS with Diluent Components

- NO_x Emission Rate via NO_x Concentration Analyzer & CO₂ or O₂ Diluent Concentration Analyzer
 - Part 75, Appendix F § 3, provides the equations that are used to compute NO_x emission rate (lb/mmBtu) given:
 - » NO_x concentration
 - » CO₂ or O₂ concentration
 - » F-factor for the fuel combusted
- Heat Input Rate via Stack Flow Monitor & CO₂ or O₂
 Diluent Concentration Analyzer
 - Part 75, Appendix F § 5, provides the equations that are used to compute heat input rate (mmBtu/hr) given:
 - » Volumetric Stack flow
 - » CO₂ or O₂ concentration
 - » F-factor for the fuel combusted

CEMS Options

- ◆ In-situ (Wet Basis measurement in the stack)
 - Point
 - Path
- ◆ Straight Extractive (Wet or Dry Basis Measurement)
 - Hot Wet Wet Basis
 - Cool Dry with condenser near the CEMS Shelter -Dry Basis
 - Cool Dry with condenser at the probe Dry Basis
- Dilution Extractive (Wet Basis Measurement)
 - In Stack Dilution
 - Out of Stack Dilution




In-Situ CEMS

- Point
 - Electro-optical, or
 - Electrochemical sensor
 - Measurement over short distant (~cm)

Path

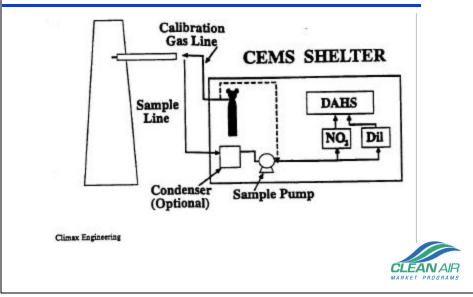
- Light or sound is transmitted across the stack
- The interaction with the stack gas is related back to a gas characteristic

In-Situ CEMS

- Typical Applications:
 - Opacity Measurement
 - » Path Light
 - Stack Flow
 - » Point Differential Pressure (s-type Pitot)
 - » Path Ultra-sonic (sound waves)

In-Situ CEMS

- Advantages
 - Lower cost
 - Compact
 - No CEMS Shelter
- Disadvantages
 - All analytical components on the stack
 - » More difficult to maintain and quality assure
 - » Analytical components exposed to harsh stack conditions
 - Many In-Situ CEMS do not accept calibration gas for calibration



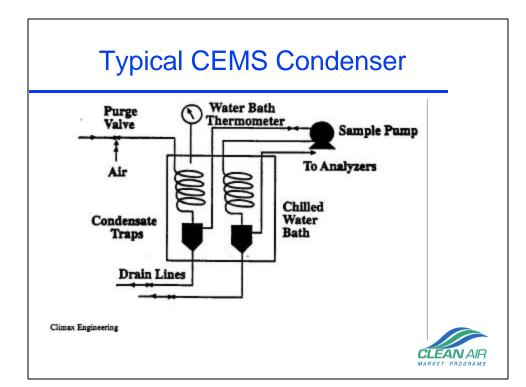
Extractive Systems

- Representative sample of the flue gas is removed from the stack, transported to a CEMS shelter and analyzed
- Components of an extractive system
 - Probe
 - Sample lines
 - Filters
 - Moisture removal system
 - Pump
 - Analyzer
- Advantages
 - Easy analyzer access for maintenance and adjustments
 - CEMS shelter provides for good instrument life
 - Calibration with gaseous standards possible

Conventional Extractive CEMS

Hot Wet Extractive CEMS

- No condenser so moisture remains in the system throughout the sampling and measurement process
 - Heated sample line, pump and analytical chamber required to keep the wet sample above its dew-point
 - Sample is analyzed hot and wet
- Analyzers must be insensitive to sample moisture content


Hot Wet Extractive CEMS

- Advantage:
 - Water soluble gases including some VOCs can be measured without potential losses in the condenser system
- Disadvantage:
 - Heated line, pump, and analytical chamber are critical to system performance. A failure can result in corrosion, plugging, and damage to the system

Cool Dry Extractive CEMS

- Flue gas is collected and passed through a condenser to remove moisture prior to analysis
- Two Options
 - Conditioning at CEMS Shelter
 - » Heated sample line required to keep the wet sample above its dew-point until it reaches the condenser
 - Conditioning at the stack
 - » No heated line
 - » however maintenance is difficult since the conditioning components are on the stack

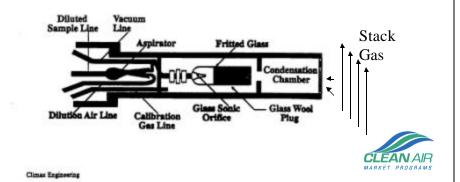
Cool Dry Extractive CEMS

Advantage:

- greater flexibility in the choice of analyzers (ie, heated chamber not required)
- Moisture interferences in the analytical components minimized

Disadvantage:

- Conditioning system maintenance required
- Possible low bias due to scrubbing of pollutant from sample in the condenser
 - » May lead to failed RATA tests or Bias test and necessitate a BAF
 - » Care required to minimize losses of analyte in the condensate
- Results may need to be adjusted to a wet basis for calculations


Dilution Extractive CEMS (wet basis)

- Flue gas is diluted with clean dry air to lower the dew-point of the sample
 - Eliminates the need for
 - » Heated sample lines
 - » Moisture removal system
- Dilution ratio is controlled by creating sonic flow across a critical orifice
 - Sonic flow of sample is maintained by achieving a set pressure drop across the critical orifice.
 - Sonic flow also depends upon
 - » Molecular Weight of the sample
 - » Pressure
 - » Temperature

In Stack Dilution (dilution probe)

- Critical Orifice is in the probe
- Sample Temperature is Stack Temperature
- Quicker response than out of stack dilution
- No temperature controls to maintain

Out of Stack Dilution (separate dilution unit)

- Critical Orifice is separate from the probe and outside of the stack
- Temperature must be controlled by heating
- Slower response
- Easier to replace Critical Orifice

Dilution Extractive CEMS (wet basis)

- Advantage:
 - No moisture transport/removal issues
 - » No loss of sample due to moisture removal
 - » No need for heated sample line after the sample is diluted
- Disadvantage:
 - Dilution Probe effects may bias measurement
 - » Effects for Molecular Weight can be minimized by calibrating the system with protocol gases which possess a MW representative of the flue gas
 - » Usually highly dependent upon the CO₂ concentration
 - » Bias can be both positive and negative

Gas Measurement Principles

- Common Analytical NO_x Measurement Techniques
 - Chemiluminescence (NO)
 - Differential Ultraviolet Absorption (NO₂)
- Diluent Techniques
 - $-CO_2$
 - » Non-Dispersive Infrared (NDIR)
 - » Gas filter correlation (GFC)
 - O_2
 - » Electrocatalytic
 - » Micro Electrochemical Fuel Cell

NO_x Chemiluminescence Analyzers

- Detects the light given off by the following chemical reaction
 - $NO + O_3 \rightarrow NO_2^* + O_2$
 - $NO_2^* \rightarrow NO_2 + hv$
- ◆ All NO₂ must first be converted to NO for the above light emitting reaction to take place
 - Stainless Steel catalytic NO_x converter
- NO and NO₂ can be separately measured by enabling and disabling the catalytic NO_x converter
 - Converter "on" → Total NO_x
 - Converter "off" → NO
 - Total NO_x $NO \rightarrow NO_2$

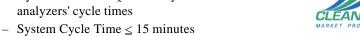
Monitoring Location Specifications for Pollutant and Diluent Gas Monitors

- ◆ Install system at a location where the measurements will be representative of total emissions for the unit (§3.1 PS2)
- System must be able to pass a RATA
- Point Monitors must measure
 - At a point within the centroid of the stack, or
 - No less than 1.0 meter from the stack wall

Monitoring Location Specifications for Pollutant and Diluent Gas Monitors

- Path Monitors must measure
 - Within the inner area bounded by a line 1.0 meter from the stack wall, or
 - So that 70.0% of the path is within the inner
 50.0% of the cross section, or
 - Such that the path crosses through the centroid

Performance Specifications for NO_x-Diluent Systems (App. A, § 3)


- 7-day Calibration Error (CE)
 - NO_x: CE ≤ 2.5% of Span or within 5 ppm of the reference gas
 - CO_2 or O_2 : $|R A| \le 0.5\% CO_2$ or O_2

Linearity Check

- NO_x Linearity Error (LE): LE $\leq 5.0\%$ of reference gas or within 5 ppm of the reference gas
- CO_2 or O_2 : LE $\leq 5.0\%$ of reference gas or within 0.5% CO_2 or O_2 of the reference gas
- NO_x analyzer is exempt if span ≤ 30 ppm

Cycle Time Test

- Test NO_x and diluent analyzers separately (upscale and downscale)
- Cycle time for NO_x-diluent system = slowest of the analyzers' cycle times

Performance Specifications for NO_x-Diluent Systems (App. A, § 3)

- Relative Accuracy:
 - RA calculated on a 'lb/mmBtu' basis
 - $-RA \le 10.0\%$ or within 0.020 lb/mmBtu of the average reference value

Bias Test:

- No system shall be biased low as determined by the test procedure in § 7.6 of Appendix A
- A Bias Adjustment Factor (BAF) is applied to the NO_v emission rate data whenever a low bias is detected

Performance Specifications for NO_x Concentration Systems (App. A, § 3)

- ◆ 7-day Calibration Error (CE)
 - CE \leq 2.5% of Span or within 5 ppm of the reference gas
- Linearity Check
 - LE \leq 5.0% of reference gas or within 5 ppm of the reference gas
 - NO_x analyzer is exempt if span ≤ 30 ppm
- Cycle Time Test
 - Perform upscale and downscale tests
 - System Cycle Time ≤ 15 minutes

Performance Specifications for NO_x Concentration Systems (App. A, § 3)

- Relative Accuracy:
 - RA calculated on a 'ppm' basis
 - RA ≤ 10.0% or within 15.0 ppm of the average reference value
- Bias Test:
 - No system shall be biased low as determined by the test procedure in § 7.6 of Appendix A
 - A Bias Adjustment Factor (BAF) is applied to the NO_x concentration data whenever a low bias is detected

On-Going Quality Assurance for Gas Monitors (App. B, § 2.1-2.2)

- Daily Calibration Error Check (§ 2.1)
 - NO_x : CE \leq 5.0% of span or within 10* ppm of the reference gas
 - CO_2 or O_2 : $CE \le 1.0\% CO_2$ or O_2
- Quarterly Linearity Check (§ 2.2)
 - $-NO_x$: LE ≤ 5.0 % or within 5 ppm of the reference gas
 - CO₂ or O₂: LE \leq 5.0 % or within 0.5% of the reference gas
 - For NO_x-diluent systems, both analyzers must be checked

* Proposed Rule Change to 5 ppm

On-Going Quality Assurance for Gas Monitors (App. B, § 2.3)

- Addresses Semiannual & Annual Assessments
- Relative Accuracy Test Audit (RATA)
 - NO_x-diluent systems
 - » Semiannual 7.5% < RA \le 10.0% or \pm 0.020 lb/mmBtu
 - » Annual RA \leq 7.5% or \pm 0.015 lb/mmBtu
 - » Ozone Season only reporters, see §75.74(c)

On-Going Quality Assurance for Gas Monitors (App. B, § 2.3)

- RATA (cont.)
 - NO_x concentration systems
 - » Semiannual 7.5% < RA \le 10.0% or \pm 15.0 ppm
 - » Annual RA \leq 7.5% or \pm 12.0 ppm
 - » Ozone Season only reporters, see §75.74(c)
- Bias Test
 - No $\mathrm{NO_x}$ -diluent or $\mathrm{NO_x}$ concentration system shall be bias low
 - Apply BAF to subsequent data if negative bias is detected

Stack Volumetric Flow Rate Monitoring

- Differential Pressure
 - S-Type Pitot
 - Annubar
- Acoustic Sensing
 - Ultrasonic
 - Audible Sensor
- Heat Transfer Sensing
 - Heat loss from a heated body to the flue

Monitoring Location Specifications for Stack Flow Monitors

- A flow monitor location is acceptable if either
 - the location satisfies the minimum siting criteria of method 1
 - » Locate 8 stack diameters downstream & 2 upstream of any disturbance
 - the results of a flow study are acceptable
- Also the flow monitor must be able to pass the required performance tests

Performance Specifications for Stack Flow Monitors (App. A, § 3)

- 7-day Calibration Error:
 - CE ≤ 3% of Span or within 0.01 in H₂O of the reference value for differential pressure systems
- Relative Accuracy:
 - Test at 3 load levels for initial certification
 - $-RA \le 10.0\%$ or within 2.0 fps of reference value
- Bias: No system shall be biased low as determined by the test procedure in § 7.6 of Appendix A
 - A Bias Adjustment Factor (BAF) is applied whenever a low bias is detected

On-Going Quality Assurance for Stack Flow Monitoring Systems

- Part 75, Appendix B § 2.1 Daily Assessments
 - Daily Flow Interference Check:
 - Daily Calibration Error Test (Differential Pressure Systems):
 - » CE \leq 6% of span or within 0.02" H_2O
- § 2.2 Quarterly Assessments
 - Leak Check (Differential Pressure Systems)
 - Flow-to-Load Ratio or Gross Heat Rate evaluation

On-Going Quality Assurance for Stack Flow Monitoring Systems

- § 2.3 Semiannual & Annual Assessments
 - Relative Accuracy Test Audit (RATA)
 - » Semiannual $7.5\% < RA \le 10.0\%$
 - » Annual RA \leq 7.5% or within \pm 1.5 fps of the reference value
 - » Ozone season only reporters, see §75.74(c)

Excepted CMS

- Part 75, Appendix D
 - Protocol that may be used in lieu of flow monitoring systems for the purpose of determining the hourly heat input rate
 - Gas and Oil fired units only
- Part 75, Appendix E
 - Procedure that may be used in lieu of a continuous NO_x emissions monitoring system for determining hourly NO_x emission rate
 - Gas and Oil fired peaking units only
 - May qualify for peaking status on ozone season basis if unit reports in ozone season only See §75.74(c)(11)

Excepted CMS

- ◆ Low Mass Emissions Unit Methodology (§75.19)
 - Procedure that may be used in lieu of CEMS or the excepted methods under App D and E for the purpose of determining hourly heat input and NO_x mass emissions
 - Natural gas and fuel oil only
 - NO_x emissions limitation
 - » Year round reporting units: $NO_x \le 50$ tons/year
 - » Ozone season only reporting units: $NO_x \le 25$ tons/control period

Part 75, Appendix D

- Heat input rate (mmBtu/hr) is determined from the:
 - Fuel Flow Rate, and
 - Gross Calorific Value (GCV) of the fuel

 HI_{rate} = Fuel Flow Rate * (GCV_{fuel} / 10⁶)

Part 75, Appendix D (Fuel Flowmeters)

- Fuel Flowmeters
 - Must meet the fuel flowmeter accuracy specification for initial certification (App D § 2.1.5)
 - Visual inspection of orifice, nozzle, and venturi meters every 3 years
 - Must pass a fuel flowmeter accuracy test at least once every four QA operating quarters (App D § 2.1.6)
 - Fuel flowmeter accuracy ≤ 2% of the flowmeter's upper range value

Part 75, Appendix D (Fuel Flowmeters)

- Types of Fuel Flowmeters
 - Orifice Plate
 - Nozzle
 - Venturi
 - Coriolis
 - Others that meet the applicable specifications

Appendix D Basic GCV Fuel Sampling Options

- Oil Sampling
 - Flow proportional/weekly composite
 - Daily manual sampling
 - Storage tank sampling (after each addition)
 - As delivered (sample from delivery vessel)
- Gas Sampling
 - Monthly Samples (pipeline natural gas, or natural gas, or any gaseous fuel having demonstrated a "low GCV variability")
 - Daily or Hourly Samples (any gaseous fuel not having a "low GCV variability")
 - Lot sampling (upon receipt of each lot or shipment)

Part 75, Appendix E (Peaking Status)

- Applicable only to Gas and Oil-Fired Peaking Units
- Peaking unit (§ 72.2 Definitions)
 - An average capacity factor of no more than 10.0% during the previous three calendar years and
 - A capacity factor of no more than 20.0% in each of those three calendar years
 - Ozone season only reporters can qualify on an ozone season only basis §75.74(c)(11)
- Initial qualification for peaking status by
 - Three years (or ozone season) of historical capacity factor data, or
 - For newer or new units, a combination of all historical capacity factor data available and projected capacity factor information

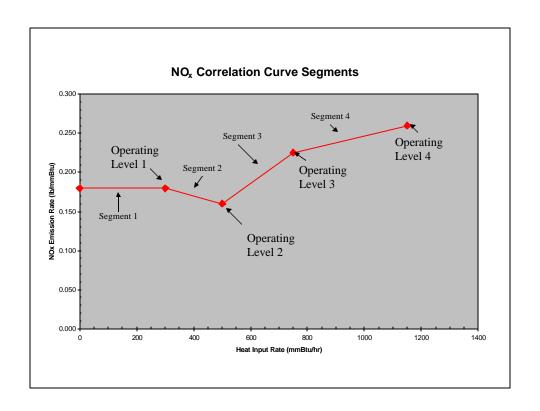
Part 75, Appendix E (Peaking Status)

- For units that make a change in capacity factor may qualify by:
 - Collecting three calendar years of data following the change to meet the historical capacity factor specification, or
 - Collect one calendar year of data following the change showing a capacity factor of less than 10.0% and provide a statement that the change is considered permanent

Part 75, Appendix E (Peaking Status)

- Units that hold peaking status must continue to meet both the 10% three year and 20% single year (or ozone season) criteria to retain peaking status
- If a unit fails to meet the criteria it must install & certify a NO_x CEM by January 1 of the year after the year for which the criteria are not met
- A unit may then re-qualify only by providing three new years (or ozone seasons) of qualifying capacity factor data

Part 75, Appendix E


- ◆ The average NO_x emission rate (lb/mmBtu) is determined from
 - Periodic fuel specific NO_x emission rate testing at four, equally spaced load levels
 - » Boilers
 - ◆ Method 7E for NO_x
 - Method 3A for the diluent
 - » Stationary gas turbines
 - ◆ Method 20 for NO_x
 - Method 3A for the diluent

Part 75, Appendix E

- ◆ Plot the NO_x Rate vs. Heat Input Rate
- ◆ Use the graph of the baseline correlation results to determine the NO_x emission rate corresponding to the heat input rate for the hour
 - Linearly interpolate between reference points to the nearest 0.001 lb/mmBtu using heat input values rounded to the nearest 0.1 mmBtu/hr

Low Mass Emissions Unit Methodology

- Applicability:
 - Natural Gas and Fuel oil combusting units only
 - An initial demonstration that the unit emits no more than 50 tons of NO_x per year, or 25 tons per control period for ozone season only reporters
 - An annual demonstration that the unit emits no more than 50 tons of NO_x per year, or 25 tons per control period for ozone season only reporters
- This methodology relies on
 - Either a Default NO_x emission rate or a Fuel-and-Unit Specific NO_x emission rate, and
 - Either Maximum Rated Hourly Heat Input for the unit or records of Long Term Fuel Flow

LME - NO_x Emission Rate

- Default NO_x Emission Rate
 - Table LM-2 of §75.19(c)

Boiler	Fuel	NO _x Emission
Type	Type	Rate (lb/mmBtu)
Turbine	Gas	0.7
Turbine	Oil	1.2
Boiler	Gas	1.5
Boiler	Oil	2

- Fuel-and-Unit Specific NO_x Emission Rate
 - Perform four load Appendix E testing
 - Use the highest NO_x emission rate from the testing multiplied by 1.15 or
 - 0.15 lb/mmBtu whichever is greater

LME - Heat Input Rate

- Maximum Rated Heat Input Method
 - §72.2 defines the Maximum Rated Heat Input as "a unit-specific maximum hourly heat input (mmBtu) which is the higher of the manufacturer's maximum rated heat input or the highest observed hourly heat input"
 - Total Heat Input for the quarter is the product of the number of operating hours and the Maximum Rated Heat Input

 $HI_{atr} = OPHrs_{atr} \times MRHI$

LME - Heat Input Rate

- ◆ Long Term Fuel Flow Heat Input Method
 - Fuel Flow
 - » Qualified fuel billing records
 - » A fuel measurement standard listed in \$75.19(c)(3)(ii)(B)(2), or
 - A fuel flowmeter certified, maintained, and quality assured according to Part 75Appendix D

LME - Heat Input Rate (LTFF Method)

- GCV
 - Part 75, Appendix D §2.2 and 2.3, or
 - Default GCV in Table LM-2
 - » Pipeline Natural Gas 1050 Btu/scf
 - » Natural Gas 1100 Btu/scf
 - » Residual Oil 19,700 Btu/lb or 167,500 Btu/gal
 - » Diesel Fuel 20,500 Btu/lb or 151,700 Btu/gal
- Total Heat Input is apportioned by load to each operating hour at the end of each reporting period
 - MDC has a module that helps in performing this task and generates EDR records for the electronic report (for single units only) - <u>Contact Kim Nguyen</u>

CLEAN AIR